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1. 

The vibration of circular membranes has been expounded by Rayleigh [1]. He also
considered the almost circular membrane, where the boundary has been perturbed
slightly. The present note studies the circular membrane with additional radial
constraints on the boundary (Figure 1(a)). Since the perturbations are not small,
Rayleigh’s technique cannot be used. Instead we shall use a two-region
eigenfunction expansion and matching method. This method is suitable for some
complex geometries and has been applied previously to coaxial waveguides [2,3].

The governing equation is

wrr +
1
r

wr +
1
r2 wuu + k2w=0, (1)

where all lengths have been normalized by the radius R of the membrane and
k=(frequency) R (tension per length/mass per area)1/2. The boundary conditions
are that w is zero on the circle r=1 and also on the M equally-spaced constraints
of length b.

Figure 1. (a) The circular membrane with M equally-spaced radial constraints. (b) A repeating
sector separated into two regions.
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2. 

For the fundamental mode, w has M-fold symmetry and we need to consider
only the sector =u=E b= p/M. The sector is further partitioned into regions I and
II (Figure 1(b)). For region I the general solution to equation (1) which is even
in u=0 and u= b and satisfies boundedness at r=0 is

wI (r, u)=A0J0(kr)+ s
a

1

An (nM)! cos (nMu)JnM (kr). (2)

Here J, Y are Bessel functions and the factor (nM)! is included to ensure the
coefficients An to be of reasonable magnitudes. The general solution for region II
which is even in u and zero on r=1 and u= b is

wII (r, u)= s
a

1

Bn cos (nnu)Hn (r), (3)

where nn =(n− 1
2)p/b and

Hn (r)0Ynn (k)Jnn (kr)− Jnn (k)Ynn (kr). (4)

Now wI and wII are to be continuous along their common boundary:

wI (1− b, u)=wII (1− b, u),
1wI

1r
(1− b, u)=

1wII

1r
(1− b, u). (5, 6)

We truncate the series An to N terms and Bn to N+1 terms. Integrating equation
(5) from u=0 to u= b yields

bJ0(kc)A0 + s
N+1

1

(−1)n

nn
Hn (c)Bn =0, (7)

where c=1− b. Multiplying by cos (mMu) and integrating yields

b

2
(mN)!JmN (kc)Am − s

N+1

1

GmnHn (c)Bn =0, m=1 to N, (8)

where

Gmn =g
b

0

cos (nnu) cos (mMu) du

=
1
2 $sin (nn +mM)b

nn +mM
+

sin (nn −mM)b
nn −mM %. (9)
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T 1

Fundamental frequency of sector with angle 2p/M

M 1 2 3 4 5 6 8 10 12
k 3·142 3·832 4·493 5·136 5·763 6·380 7·588 8·771 9·936

Similarly, equation (6) gives

− bkJ1(kc)A0 + s
N+1

1

(−1)n

nn
H'n (c)Bn =0, (10)

bk
4

[JmM−1(kc)− JmM+1(kc)](mN)!Am − s
N+1

1

GmnH'n (c)Bn =0, m=1 to N.

(11)

Equations (7), (8), (10) and (11) represent 2N+2 homogeneous equations and
unknowns. For the non-trivial solution, the determinant of the coefficients is set
to zero. This gives the characteristic equation which is solved for the minimum
value of k. Accuracy is improved by increasing N. It was found that N=10 is
adequate for three significant digits in k. After k is determined, set A0 =1 and
solve for the rest of the coefficients. The vibration mode w is then obtained.

3.   

The characteristic equation is in closed form when b=0 or b=1. When b=0
the geometry is the circular cylinder. The fundamental frequency is the first root
of J0(k)=0, or k=2·4048. For b=1 the constraints separate the circle into
circular sectors. The fundamental frequency is the first root of JM/2(k)=0. See
Table 1.

For 0Q bQ 1, the method in the previous section is used. Figure 2 shows the
result. For given M, the fundamental frequency increases with b, starting from the
circular value of 2·4048 and ending with the sector value given in Table 1. The
higher the number of constraints M, the higher the frequency. For the M:a case
the constraints effectively shrink the circular membrane to a smaller one with
radius 1− b. The fundamental frequency is then

k=
2·4048
1− b

. (12)

One can also see from Figure 2 that for larger M, the frequency seems to have
two distinct phases: a rising phase for small b, and a plateau phase for large b.
Figure 3 shows typical amplitude curves for M=6. Only the sector 0E uE b is
shown. The amplitude, of course, is unique up to a multiplicative constant. Figure
3(a) shows the mode for b=0·5 on the rising phase. The maximum amplitude is
at r=0, the center. The vibration mode is similar to that of a circular membrane,
with peripheral regions periodically suppressed by the protruding constraints.
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Figure 3(b) shows the mode for b=0·75, which is at the transition between the
rising phase and the plateau phase. We see that the maximum amplitude shifted
from the center to M points between the constraints (near r=0·65). The latter
characteristic is a property of the sector membrane shown in Figure 3(c). (The
exact solution is w0 cos (3u)J3(6·380r).) In the plateau phase both the mode shape
and the frequency are almost constant for the range 0·8Q bQ 1.

The frequency of a circular membrane is increased by constraints on the
boundary. The constraints may be unavoidable, or may also be used to actively
alter the frequency. It was found that the frequency is most sensitive if the lengths
of the constraints are in the range 0·5Q bQ 0·7.

Recently [4] a membrane strip with periodic boundary constraints was studied.
In that problem the matching of two regions was unnecessary and eigenfunction

Figure 2. Fundamental frequency as a function of b for various M.
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Figure 3. Vibrational mode for M=6; (a) b=0·5, (b) b=0·75, (c) b=1.

expansions in a single region sufficed. Also the distinct change in vibration
character as in the present circular membrane was not found.
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